Week 2 Worksheet 137A Review; QM in 3D (and some spin)

Jacob Erlikhman

9/4/22

Exercise 1. A Hilbert space is mathematically defined as a *complete* vector space with an inner product. A vector space with an inner product is **complete** if it includes not only all finite sums of vectors in a basis, but also all limits of convergent sequences, i.e. given a sequence (v_n) of vectors in the Hilbert space, v is the **limit** of the sequence if $\lim_{n\to\infty} ||v_n - v|| = 0$, where $||v|| = \sqrt{v \cdot v}$.

a) Consider a Hilbert space \mathcal{H} that consists of all functions $\psi(x)$ such that

$$\int_{-\infty}^{\infty} |\psi(x)|^2 \, \mathrm{d}x < \infty.$$

Show that there are functions in \mathcal{H} for which $\hat{x}\psi(x) = x\psi(x)$ is not in \mathcal{H} .

b) Consider the function space Ω in \mathcal{H} which consists of all $\varphi(x)$ that satisfy the set of conditions

$$\int_{\infty}^{\infty} |\varphi(x)|^2 (1+|x|)^n \, \mathrm{d}x < \infty,$$

for any $n \in \{0, 1, 2, ...\}$. Show that for any $\varphi(x)$ in Ω , $\hat{x}\varphi(x)$ is also in Ω . Ω is called the **nuclear** space.

c) The **extended** space Ω^{\times} consists of those functions $\chi(x)$ which satisfy

$$(\chi,\varphi) = \int_{-\infty}^{\infty} \chi^*(x)\varphi(x) \,\mathrm{d}x < \infty,$$

for any φ in Ω , where (,) is the inner product on \mathcal{H} . Which of the following functions belong to Ω , to \mathcal{H} , and/or to Ω^{\times} ?

Remark. The collection $(\Omega, \mathcal{H}, \Omega^{\times})$ is called "rigged Hilbert space," and this is a rigorous way to include all the formalism (e.g. eigenvectors of position are delta functions, and hence can't belong to an L^2 space) into the Hilbert space formulation of quantum mechanics. Note that $\Omega \subset \mathcal{H} \subset \Omega^{\times}$ (it's easy to see this once you realize $\mathcal{H} = \mathcal{H}^{\times}$). Also, note that in order to sit in Ω , functions must vanish faster than any power of x as $|x| \to \infty$. Thus, as long as functions don't diverge at ∞ more strongly than any power of |x|, they are in Ω^{\times} . For more details, see Ballentine *Quantum Mechanics*, Chapter 1.

i)
$$\sin(x)$$

ii) $\sin(x)/x$
iii) $x^{2}\cos(x)$
iv) $e^{-ax}, a > 0$
v) $\frac{\ln(1 + |x|)}{1 + |x|}$
vi) $e^{-x^{2}}$
vii) $x^{4}e^{-|x|}$

Exercise 2. We say an operator on a Hilbert space is **hermitian** if its action on vectors is the same as that of its hermitian adjoint, i.e. for all v in the Hilbert space, $Qv = Q^{\dagger}v$. We say it is **self-adjoint** if in addition the domains of the two operators Q and Q^{\dagger} are the same. Note that in a finite-dimensional Hilbert space, these two notions are identical (why?). It turns out that in order to represent observables, operators must be self-adjoint, not just hermitian.

- a) What is the Hilbert space (of functions of position) associated to the solutions of the timeindependent, 1-dimensional Schrödinger equation with hamiltonian $H = p^2/2m$ (you need to give a vector space *and* an inner product)?
- b) Are the eigenvectors of position in this Hilbert space? What about momentum eigenvectors?
- c) If we suppose that the domain of p is the entire Hilbert space from (a), is p hermitian here? What about self-adjoint?
- d) Consider now the infinite square well on [0, a]. Given the form of the momentum operator $p = -i\hbar d/dx$, we could define its domain as the set of all L^2 functions f(x) on [0, a] such that f(0) = 0 and f(a) = 0. Show that in this case p is hermitian.¹ Is it also self-adjoint?
- e) Suppose now we extend the domain of p to include functions that satisfy f(a) = λf(0), for some λ ∈ C. What condition must we then impose on the domain of p[†] such that p[†] be hermitian? For what values of λ is p self-adjoint?
- f) Instead of the infinite square well, consider a semi-infinite interval $0 \le x < \infty$. Is there a self-adjoint momentum operator in this case?

Exercise 3. Solve the eigenvalue problem for the 3-D isotropic, harmonic oscillator, whose hamiltonian is $H = p^2/2m + m\omega^2 x^2/2$, where $p^2 = \mathbf{p} \cdot \mathbf{p}$, $x^2 = \mathbf{x} \cdot \mathbf{x}$ is the 3-D dot product.

$$f \cdot g = \int_U f^* g \, \mathrm{d}x.$$

¹The Hilbert space usually considered in quantum mechanics is that of L^2 functions defined on some interval or higher-dimensional (open) subset U of euclidean space. L^2 means a Hilbert space complete under the L^2 norm, which is given by $||f||_2 = \int_U |f(x)|^2 dx$, where dx is the measure on U. The L^2 inner product is the familiar one:

Exercise 4. In this problem, you will construct the 2×2 matrix corresponding to the component of spin angular momentum along an arbitrary direction \hat{r} .

- a) A rotation can be specified by the Euler angles (α, β, γ) , or by (θ, φ) . The Euler angles represent first a rotation about \hat{z} by an angle α , then a rotation *about the new y*-axis by an angle β , and then a rotation about the *new z*-axis again. Convince yourself that this works.
- b) Now, suppose given a rotation specified by the Euler angles (α, β, γ) . This is given in quantum mechanics by the matrix

$$e^{-i\gamma S_{z'}/\hbar}e^{-i\beta S_u/\hbar}e^{-i\alpha S_z/\hbar}$$

where the *u*-axis is the new *y*-axis after rotating about *z*, and the *z'*-axis is the new *z*-axis after rotating about \hat{z} and \hat{u} . Show that this is the same matrix as

$$e^{-i\alpha S_z/\hbar}e^{-i\beta S_y/\hbar}e^{-i\gamma S_z/\hbar}$$

Hint:²

- c) Use part (b) with $S_i = \frac{\hbar}{2}\sigma_i$ to calculate the rotation matrix corresponding to placing the \hat{z} axis along \hat{r} , where \hat{r} is specified by the two angles (θ, φ) . This is exactly the spin matrix S_r .
- d) Calculate the eigenvalues and eigenspinors of S_r .

Exercise 5. A particle of mass *m* is placed in a finite spherical well

$$V(r) = \begin{cases} -V_0, & r \le a \\ 0, & r \ge a \end{cases}.$$

Find the equation that quantizes the energy (you don't need to solve it), by solving the radial Schrödinger equation with $\ell = 0$. Explain how you could solve this equation and obtain the energies. Show that there is no bound state if $V_0a^2 < \pi^2\hbar^2/8m$. Hint: ³

Exercise 6. Show that Ehrenfest's theorem is valid in 3-dimensions,

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle Q\rangle = \frac{i}{\hbar}\langle [H,Q]\rangle + \left\langle \frac{\partial Q}{\partial t} \right\rangle.$$

Then, show that

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle \mathbf{x} \rangle = \frac{1}{m} \langle \mathbf{p} \rangle$$
$$\frac{\mathrm{d}}{\mathrm{d}t} \langle \mathbf{p} \rangle = \langle -\vec{\nabla}V \rangle.$$

²Denoting a rotation about the axis r by an angle ζ as $R_r(\zeta)$, we have that $S_u = R_z(\alpha)S_yR_z(-\alpha) = e^{-i\alpha S_z/\hbar}S_ye^{i\alpha S_z/\hbar}$. Now, try to write a similar expression for $R_{z'}(\gamma) = e^{-i\gamma S_{z'}/\hbar}$.

³Recall that the radial Schrödinger equation is identical to the time-independent, 1-dimensional Schrödinger equation with the wavefunction replaced by u(r) = rR(r) (where $\psi(r, \theta, \varphi) = R(r)\Theta(\theta)\Phi(\varphi)$) and potential $V_{\text{eff}}(r) = V(r) + \frac{\hbar^2 \ell(\ell+1)}{2mr^2}$.